当前位置:首页 > 教学资料 > 教学反思

《解简易方程》教学反思

时间:2024-10-27 17:57:20
《解简易方程》教学反思

《解简易方程》教学反思

作为一名人民教师,教学是重要的工作之一,写教学反思能总结我们的教学经验,怎样写教学反思才更能起到其作用呢?以下是小编为大家整理的《解简易方程》教学反思,仅供参考,大家一起来看看吧。

《解简易方程》教学反思1

解方程是数学领域里一块儿重要内容,在实际生活中,学会了列方程解决问题之后,很多不易用算术方法解答的习题,却能列方程很容易地解答出来,这足以说明列方程解决问题比算术法解决问题有非常明显的优越性。

今年我教的是四年级,所用教材是青岛版五四制教材,第一单元就出现了解方程的内容,这部分教材我已经教学了四遍了,按理说这第五次教学这部分内容应该是易如反掌、挥洒自如,可是面对新教材的设计,我这个五年不教学高年级的老师却有了很大困惑----本教材的教学设计打破了传统的教学方法,而出乎我预料的则是借用天平演示使学生感悟“等式”,知道“等式两边都加上或减去都乘或除以同一个非零的数,等式仍然成立”这个规律,从而使学生进一步从真正意义上理解方程的意义,并学会运用等式的性质解方程。在以前几轮教材中,学习解方程之前都是先要求学生熟练掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差;减数=被减数-差;被除数=商×除数;除数=被除数÷商等关系式来求出方程的解,就连我自己小时候学习的解方程也都是根据加减、乘除法各部分之间的关系求方程的解的。

开始我有些怀疑,以为只有青岛版五四制这个版本的教材利用了等式的性质教学的,于是急切的打开电脑找到各种版本的电子教材翻看这部分内容,却发现各种版本的教材设计思路是一样的,都是先学习等式的基本性质,接着再运用等式的基本性质解方程。为了彻底弄明白教材的编写意图,我又找到了这几个版本的教材所配套的教师教学用书翻看,新教材编写者大致都是这样解释的:长期以来,小学教学简易方程时,方程变形的依据总是加减、乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。看了这些内容,我才从思想上认可了这种设计思路,原来是为了使小学教学解方程和中学教学解方程的方法保持一致。

理解了教材的设计意图,我开始强迫自己扭转老的教学思路。结果学生因为是初次接触,课堂上学习的竟是那样的有滋有味。但在后面的教学中,我渐渐发现采用等式的基本性质解方程给学生带来的竟然是局部的衔接,而存在局部的衔接对学生会更困难。从教材的编排上,整体难度虽然有所下降,却把用等式的性质解方程的方法单一化了。教材有意避开了形如a—x=b a÷x=b等类型的题目,不教学此类方程的求解方法,因为这类题目如果采用等式的性质来解非常麻烦。很显然采用等式的性质这种方法教学小学阶段的解方程目前存在着很大的局限性。

但在教学列方程解决实际问题时,我们又不能避免学生在列方程时,依然出现形如a-x=b和a÷x=b的方程,特别是我们不能刻意地给学生强调不能列出x在后面做减数或做除数的方程,如果这样强调,学生心中会存在很大的疑惑,当学生列出这样的方程时,我们更头痛于学生求解能力的局限性。

鉴于以上原因,课堂上我采用了新老教学思路结合使用的方法,先从教材中的新思路运用等式的基本性质教会孩子解较简单的方程,以便于日后初中学习时顺利接轨,同时对于初中学习“移项”也能顺利接收。但是面对现在四年级孩子的思维及接受能力,我再利用老教材的教学思路“加减、乘除法各部分之间的关系”教给孩子解方程,至少这样能让我的学生会解各种类型的方程,特别是有利于孩子们列方程解决实际问题,他们不会再被“以乘代除”、“以加代减”的思路困扰着列方程,并且列出来还能顺利解这个方程。

我个人以为,这样用新旧方法结合着教学,既能让学生为以后的学习做好衔接,形成绿色的通道,同时又体现解决同一问题方法、思路的多样性。通过学生的课堂作业,我发现教学效果出奇的好。

通过解方程这部分内容的教学,我感到不论你的教龄有多长,你对同一教学内容教学了有几遍,每次教学都需要教师静下心来好好的研究教材教法,这样才能用最适合学生未来发展的方法去教学生。

《解简易方程》教学反思2

《解方程》是人教课标版小学数学五年级上册第四单元内容,本节课是在学生学习了用字母表示数和方程的基础上进行教学的,新课程的解方程一改以往的由加减乘除各部分之间的关系的引入方法,运用更能让学生明白的天平平衡的原理来引入,《解简易方程》教学反思。解题的基本原理从未改变——等式的基本性质,即:方程的两边同时加上或减去相同的数,除以或乘以同一个不为零的数,方程的两边仍相等。

这节课内容不是新内容,但方法却是新方法,我认为设计教学时应将“方程的解”和“解方程”这两个概念放到例题1的后面引入,能使学生对概念理解更充分,印象更深刻。

教学中我先利用课件演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后出示例1,让学生列出方程x+3=9,用课件演示x+3个方块=9个方块,提问:“如果要称出x有多种,改怎么办?”,引导学生思考,只要将天平两端同时减去3个方块,天平仍平衡,得到一个x相当于6个方块,从而得到x=6。你能把称的过程用算式表示出来吗?大部分学生快速的写出了我想要的答案:x+3-3=9-3,于是我问:为什么方程两边要同时减去3,而不减去其它数呢?学生沉默,终于有两双小手举起来了,“为了得到一个x得多少”,我又强调了一遍,我们的目标是求一个x的多少,所以要把多余的3减去,为了不耽误更多的时间,我没有继续深入探究。接下来教学例2,同样我利用天平原理帮助学生理解,在学生说出要把天平两端平均分成3分,得到每份是6的基础上,我用课件演示了分的过程,让学生把演示过程写出来,从而解出方程,教学反思《《解简易方程》教学反思》。在此基础上我引导学生总结天平保持平衡的道理,得到等式的基本性质:方程的两边同时加上或减去相同的数,除以或乘上同一个不为0的数,方程两边仍然相等。当学生的解题方法得到了教师的肯定,让学生明白这种解题方法的优缺点。培养学生的创新能力和自主学习的能力让学生成为课堂的主体,教师充分发挥主导作用。

按理说,只要稍加类推,学生应该能掌握方程的解法。但接下来的练习却大大出人意料,除了少数成绩较好的学生能按照要求完成外,大部分几乎不会做,甚至动不了笔。问题出在哪里?经过认真反思总结如下:

一是从天平过渡 ……此处隐藏6793个字……本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接,教学反思《解简易方程教学反思》。通教材的老师也主张用等式的基本性质解方程。

在我的教学过程中却出现了这样的问题 ,利用等式的基本性质解形如x+a=b与x-a=b, ax=b与x÷a=b一类的方程,学生方法掌握起来比较简单。但写起来比较繁琐。然而遇到a-x=b、a÷x=b的方程时,由于小学生还没有学习正负数的四则运算,如果利用等式的基本性质解,方程变形的过程及算理解释比较麻烦;但是在教学过程中我们不可避免地会遇到根据现实情境从顺向思考列出X当作减数、当作除数的方程,要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否则,我们的教学就会显得片面和狭隘。于是,我又要求学生遇到X当作减数、当作除数的方程时,要求学生会用减法和除法各部分之间的关系来做。但是,我发现这让有些孩子无所适从。我现在感到很困惑,我们到底怎样做才是合理得呢?恳请各位老师指教。

《解简易方程》教学反思11

学生经历由天平上的具体操作抽象为代数问题的过程,能用等式的性质(天平平衡的道理)列出方程,对于解比较简单的方程,学生并不陌生。

比如:x+4=7学生能够很快说出x=3,但是就方程的书写规范来说,有必要一开始就强化训练,老师规范的板书,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。对于稍复杂的方程要放手让学生去试一试,这样就可以使探究式课堂教学进入一个理想的境界。

不难看出,学生经历了把运算符号“+”看错成了“-”,又自行改正的过程,在这一过程中学生体验到了紧张、焦急、期待,成功的感觉,这时的数学学习已进入了学生的内心,并成为学生生命成长的过程,真正落实了《数学课程标准》中“在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心”的目标,在这个思维过程中,学生获得了情感体验和发现错误又自己解决问题的机会。老师以人为本,充分尊重学生,也体现在耐心的等待,热切的期待的教学行为上,老师的教学行为充满了人文关怀的气息,微笑的脸庞、期待的眼神、鼓励的话语,无时无刻不使学生感到这不仅是数学学习的过程,更是一种生命交往的过程,学生有了很安全的心理空间,不然,他怎么会对老师说“老师,我太紧张了”,这是学生对老师的信任和自己不安的复杂情绪的表现。反思我们的教学行为,如果在课堂中多一些耐心和期待,就会有更多的爱洒向更多的学生,学生的人生历程中就会多一份信心,多一份勇气,多一份灵气。

《解简易方程》教学反思12

在本课教学中,我主要采用小组合作学习,讨论的方式,让学生探究新知识,效果较好。

出示例题2,小组合作学习,讨论:

①你是怎样理解图意的?

②你是如何列方程的?

③你是根据什么解方程的?④怎样检验方程的解是否正确?然后班交流讨论,展示学生的练习。

指名回答,说说自己的分析。你对他的分析有什么要问的吗?

教师总结解题关键。

教学例3时,让学生观察、分析,这道题与前面的练习题比较有什么区别?这道题可以怎样解?(先小组交流后个人解答)学生找出解题关键,培养一题多解的习惯与能力。

最后让学生做全课总结:今天学习了什么知识?解方程的关键是什么?

充分练习,进行思维训练,设计有趣的习题“帮小兔找家”:4x-12=20 3x=15 x+7=15 2x+3×2=16

18-2x=2 15÷3+4x=25

巩固知识,激发兴趣。

《解简易方程》教学反思13

教学实录:

出示例题:6x-6.8×2=20

师:请你观察一下这道方程和我们原来所学的方程有什么不一样?

生:它比原来多了一个6.8×2。

生:它比我们原来所学的方程多了一步运算。

师:你回答的非常好,这个方程比刚才解答的方程要多一步计算,这就是今天要学习的解简易方程。(板书课题)

评析:

“一切真理都要让学生自己去获得,由他重新发明,而不是草率地传递给他。”为此,我在教学中通过让学生对新旧知识进行比较,让他们自己去获取新知。继而在教师的引导下尝试求6x-6.8×2=20的解。

我知道在前面已复习了ax土bx=c的方程,为推导求ax土b=c(b表示两数的积)的方程作铺垫;例题不但承接了上节课的内容,而且引出了本节课的新内容。这两道题,帮助学生找到新旧知识最近的连接点,为新知的学习做好铺路架桥的工作。

教学实录:

师:这道题是6x减去什么的差等于20,你觉得这道题开始要怎样解?

生:应先算6.8×2。

师:为什么要先算6.8×2?

生:因为前面是减法,后面是加法,我们应该按照四则混合运算的顺序先乘后减,所以要先算6.8×2。

生:先算6.8×2就可以使方程变为6x-13.6=20,又回到了我们原来所学的方程。

生:因为在这条方程中6.8×2可以先算出来,所以要先算。

师:这两位同学很会动脑筋也都观察的非常仔细。解这个方程时,按运算顺序能先算的一步就要先算出来,然后再求方程的解,其中又把6x暂时看做一个数。

师:现在就请一位同学上黑板来演示一遍,看这样算行不行?其他同学也请自己在下面试试看。

同学们踊跃地举起了手。

师:你们觉得他做的对吗?做的完整吗?

生:我觉得他做的是对的,我也做到这么多。

同学们都在那里点头称是。

师:再仔细看看!

同学们感到很疑惑,一个个皱紧了眉头。沉默片刻,突然有一只小手举了起来。

生:他的答案是正确的,但是我觉得他做的不完整。

学生被这个说法吸引了起来,顿时三三两两地举起了手。

生:因为他还没有检验。

师:你们同意吗?

生齐答:同意。

师:对了,在解方程时我们一定要养成自觉检验的习惯,以此来检查方程的解对不对。

让学生在自己的本子上边回忆边检验,然后同桌互相检查检验的过程。

评析:

第一层:操作尝试,理解概念

为了让学生更好地掌握怎样去解答ax土b=c(b表示两数的积)的方程,我让学生自己去探究。

第二层:潜移默化,推导方法

有了上一层的前提教学,在这一层,我就可以放手让学生尝试解答例题了。并提出问题你觉得这道题开始时要怎样去解?为什么?该怎样检验方程的解?

其实这些“想”的过程正是教师要教的过程,也是学生解题的的思考过程。这些自学提纲充当了学生自学的“领路人”,学生通过提示,再思考该填上的内容,新知识便顺利地掌握了。

《《解简易方程》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式